
Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle
Professor Sophie Engle
Department of Computer Science

Liveness
CS 272 Software Development

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Motivation
● We want healthy threads (i.e. thread liveness)

○ Thread should execute in a timely manner

● Several situations to avoid (i.e. liveness problems)
○ Threads can die prematurely (deadlock)
○ Threads can starve and take a long time (starvation)
○ Threads can be too distracted (livelock)

http://docs.oracle.com/javase/tutorial/essential/concurrency/liveness.html

https://www.cs.usfca.edu/
http://docs.oracle.com/javase/tutorial/essential/concurrency/liveness.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Deadlock

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Deadlock

● Occurs when two or more threads must wait for each
other to finish work

● Threads are indefinitely blocked and never complete
○ The threads are effectively dead (hence deadlock)
○ Similar effect as an infinite loop

http://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

https://www.cs.usfca.edu/
http://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Deadlock Example
1. void transfer(Account to, Account from, int amount) {
2. lock(a);
3. lock(b);
4.
5. withdraw(b, amount);
6. deposit(a, amount);
7.
8. unlock(b);
9. unlock(a);

10. }

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Deadlock Example
transfer(ann, bev, amount) transfer(bev, ann, amount)

1 lock(ann); lock(bev);

2 lock(bev); lock(ann);

3 withdraw(bev, amount); withdraw(ann, amount);

4 deposit(ann, amount); deposit(bev, amount);

5 unlock(bev); unlock(ann);

6 unlock(ann); unlock(bev);

7 Will this finish?

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Deadlock Example
transfer(ann, bev, amount) transfer(bev, ann, amount)

1 lock(ann); lock(bev);

2 lock(bev); // must wait lock(ann); // must wait

3 withdraw(bev, amount); withdraw(ann, amount);

4 deposit(ann, amount); deposit(bev, amount);

5 unlock(bev); unlock(ann);

6 unlock(ann); unlock(bev);

7 DEADLOCK on line 2!

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Deadlock Avoidance
● Deadlock detection and prevention difficult

○ Must turn to heuristics for avoidance

● Avoid obtaining multiple locks if possible

● Try to obtain locks in same order

● Avoid dependencies and cycles

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Starvation and Livelock

https://www.cs.usfca.edu/

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Starvation
● Occurs when a higher priority thread prevents a lower

priority thread from accessing a resource
○ Resource may be CPU time or something else
○ Often caused by overzealous synchronization

● Lower priority threads are starved of the resource, and
take too long (or never) complete

http://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

https://www.cs.usfca.edu/
http://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Livelock
● Occurs when a thread triggers another thread, which

triggers the previous thread, and so on

● Threads spend all effort on responding to each other
○ Threads are not blocking each other, so still "lively"

but locked in a loop preventing progress
○ Sometimes caused by deadlock prevention!

http://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

https://www.cs.usfca.edu/
http://docs.oracle.com/javase/tutorial/essential/concurrency/starvelive.html

Department of Computer Science
https://www.cs.usfca.edu/

CS 272 Software Development
Professor Sophie Engle

Thread States

https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html

Runnable TerminatedNew

Timed Waiting BlockedWaiting

https://www.cs.usfca.edu/
https://www.cs.usfca.edu/~cs272/javadoc/api/java.base/java/lang/Thread.State.html

Professor Sophie Engle
sjengle.cs.usfca.edu

Software Development
Department of Computer Science

https://sjengle.cs.usfca.edu/

